Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 866: 161363, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610620

RESUMO

Anthropogenic marine litter (AML), mainly plastic, is a global concern that is persistent and widespread. To prevent and mitigate this threat, we need to understand the magnitude and source of AML. There is limited knowledge about AML pollution on the Indian Coast. In this context, the present study examined the distribution, abundance, typology, and beach quality based on AML along 22 beaches on the southeastern coast of the Arabian Sea. A total of 4911 AML items were classified into 9 categories, weighing 16.79 kg, and retrieved from a total area of 8000 m2. The mean abundance and weight of AML in the current study were 0.45 ± 0.34 items/m2 and 1.53 ± 0.92 g/m2, respectively. Thottapally showed the most abundant AML among the studied beaches with 0.96 items/m2, followed by Azheekkal with 0.73 items/m2. Plastic, being the most common item, accounts for 77.6 % of all items and has a mean density of 0.35 items/m2 comprising hard plastic (22 %), thermocol (13 %), food wrappers (7 %), cigarette butts (7 %), plastic rope (6 %), and plastic cutlery (6 %). Hazardous anthropogenic litter (HAL) was maximum at Thottapally (17.71 %; 85 out of 480 items collected). Based on the cleanliness of beaches, they are graded "moderately clean" (63 %) by the General Index (GI), "clean" (54 %), and "moderately clean" (40 %) as calculated by the Clean Coast Index (CCI). Hazardous Anthropogenic Beach Litter Index (HABLI) classifies 72 % of beaches as "moderately safe", while the Environmental Status Index (ESI) rates 68 % of beaches as "mediocre". Besides, model simulations demonstrated the pathways of AML propagation, which correlate to the littoral and coastal current flow patterns over the region. Land-based activities were the crucial factors influencing AML distribution. The study highlighted the need for effective regional litter management strategies, policy instruments for the litter impact pathways, economic, regulatory, and behavioural management tools, which were also discussed.

2.
Chemosphere ; 310: 136824, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241111

RESUMO

Benthic foraminifera are increasingly used as an indicator of environmental disturbance. Their sensitivities to pollutants can be reflected by changes in assemblage, which can provide useful information about ecosystem health. This study aimed to investigate the impact of organic and inorganic pollutants on the benthic ecology of the Chennai coast, with a focus on the 2017 oil spill caused by the collision of two ships. Sediment samples collected from five distinct zones along the coast were analysed for pollutants such as polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPH), heavy metals (Cr, Cd, Pb) and total organic carbon (TOC). The maximum concentrations of Cr (137 µg/g), Cd (6.93 µg/g) and Pb (34.2 µg/g), as well as TPH (84.3 µg/g) and PAHs (227 ng/g), were observed. A total of 47 species of foraminifera were identified in this study, of which 12 were morphologically abnormal. In the low-impact zone, the species diversity index (H') was higher. TPH and PAH concentrations were positively associated with abnormal species. Pollution-resistant foraminifera species include Ammonia tepida, Elphidium discoidale, and Quinqueloculina lamarckiana, while opportunistic foraminifera include Pararotalia curryi, Nonionella stella, Rosalina globularis, and Spirillina vivipara. PAHs and heavy metals were adversely correlated with foraminiferal abundance, while TPH was positively correlated. To assess the response of the benthic ecosystem to hydrocarbon pollution, indices such as the Foraminiferal Index of Environmental Impact (FIEI), Exponential (H'bc) index and the Foraminiferal Abnormality Index (FAI) were used as environmental health proxies. FIEI, exp(H'bc) and FAI values show the impact of hydrocarbon pollution to an extent along the northern Chennai coast.


Assuntos
Poluentes Ambientais , Foraminíferos , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Foraminíferos/fisiologia , Sedimentos Geológicos/análise , Poluentes Ambientais/análise , Monitoramento Ambiental , Ecossistema , Cádmio/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Índia , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
J Environ Manage ; 328: 116902, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36508978

RESUMO

Efficient nutrient cycling through decomposition of leaf litter often regulates the high productivity and subsequent carbon sequestration of mangrove ecosystems along the land-ocean boundary. To understand the characteristics and the potentials of mangrove leaf litter in supplying organic carbon and nutrients to the coastal waters, four major mangrove species (A. officinalis, R. mucronata, H. littoralis and S. apetala) of Bhitarkanika mangrove forest, Odisha, India, were examined in controlled environmental conditions. Half-life time (t0.5), estimated for decomposition of those mangrove leaf litter materials ranged from 18 to 52 days. During the incubation experiment, organic carbon from mangrove leaf litter was released primarily through physical processes and was available for heterotrophic respiration. Among the four species, leaf litter of S. apetala with the lowest initial C/N ratios, released organic carbon with low molecular weight (labile substances) that has a relatively higher potential to support the aquatic food web. On the contrary, leaf litter of R. mucronata released organic material with relatively higher molecular weight (humic substances, higher aromaticity), which revealed its superior non-labile characteristics in this unique environment. The mean total heterotrophic bacterial (THB) population in the incubation was around nine-fold higher than the control. THB population growth and Chromophoric Dissolved Organic Matter (CDOM) spectral data further suggested the rapid release of highly labile and recalcitrant carbon from S. apetala and R. mucronata (between 7th and 21st day of incubation), respectively. The mean litter fall from the Bhitarkanika mangrove forest was estimated to be 11.32 ± 1.57 Mg ha-1 y-1 and its corresponding carbon content was 5.43 ± 0.75 Mg C ha-1. The study revealed the role of leaf litter leachates as an important food source to microbial communities in the adjacent coastal waters, in addition to a potential carbon sequesterer through long-term burial in mangrove soil and export to the deep sea.


Assuntos
Ecossistema , Áreas Alagadas , Folhas de Planta , Carbono , Nutrientes
4.
J Biomol Struct Dyn ; 41(7): 2848-2860, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35193476

RESUMO

The flavonoid based 7-hydroxy flavone (PubChem CID: 5281894; molecular formula: C15H10O3) molecule has been isolated for the first time from the methanolic extract from the leaves of Avicennia officinalis L. in the tropical mangrove ecosystem of Andaman and Nicobar Islands (ANI), India. The molecular structure of bioactive compound was characterized by spectroscopic analysis, including FT-IR, 1H, 13C NMR spectroscopy and ESI-HRMS and elucidated as 7-hydroxy flavone. An anticancer activity of isolated 7-hydroxy flavone was evaluated by in vitro study against two different human cancer cell lines namely, HeLa (cervical cells) and MDA-MB231 (breast cells) and they exhibited promising anticancer activity with IC50 values are 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL, respectively. The antioxidant property of 7-hydroxy flavone at a standard concentration of 50 µg, was found to be (IC50) 5.5486 ± 0.81 µg/mL. In summary, this investigation provides evidence that 7-hydroxy flavone exhibits both anticancer and antioxidant properties. Meanwhile, the antimicrobial activity ability of 7-hydroxy flavone were also evaluated using three Gram positive and two Gram negative strain exhibited no antimicrobial activities. Density-functional theory (DFT) studies confirm the structure is global minima in the PES, from the optimized geometry FMO and MESP map analyzed. Further, the molecular docking and molecular dynamics simulation studies result shows that 7-hydroxy flavone has the better binding ability with anti-apoptotic Bcl-2 protein with the estimated free energy of binding of -6.3 kcal/mol. This bioactive compound may be act as drug candidate for treating various kinds of cancers. HighlightsA 7-hydroxy flavone molecule has been isolated from Avicennia officinalis.The isolated pure compound was subjected to spectral analysis such as FT-IR, 1H NMR, 13C NMR spectral data and HRMS analysis for skeleton of the molecule.The anticancer activity of 7-hydroxy flavone studied against Cervical (HeLa) cancer cell lines and breast (MDA-MB231) cancer cell lines with the IC50 values of 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL), respectively.The antioxidant properties of 7-hydroxy flavone were found to be (IC50) 5.5486 ± 0.81 µg/mL at a standard concentration of 50 µg.DFT, molecular docking and MD simulation results explained that 7-hydroxy flavone could be the most promising candidate to inhibit the function of anti-apoptotic Bcl-2 protein in cancerous cell.Communicated by Ramaswamy H. Sarma.


Assuntos
Avicennia , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antioxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ecossistema , Proteínas Proto-Oncogênicas c-bcl-2
5.
Sci Total Environ ; 857(Pt 1): 159221, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206910

RESUMO

Co-occurrence of resistance and virulence is often overlooked in aquatic bacteria as environmental reservoirs, while transmission of these characteristics to clinically significant strains present unforeseen problems in future. In this investigation, environmental bacteria identified concurrently from multiple aquatic habitats viz., groundwater, canal, river and coastal waters were profiled for antibiotic resistance, metal tolerance, virulence factors and genes coding for these determinants. Strains from polluted river and canal exhibited higher resistance and virulence, especially Pseudomonas gessardii and P. fluorescens displayed high antibiotic resistance index (ARI > 0.6-0.8) with Alkaline Protease and Phospholipase production. Opportunistic pathogens including Vibrio parahaemolyticus, V. alginolyticus, V. vulnificus, Corynebacterium and Comamonas testosteroni expressed all three virulence factors with relatively low resistance. However, V. vulnificus and V. alginolyticus exhibited multiclass antibiotic resistance (5/6 classes). Metagenomic analysis revealed that genes corresponding to beta-lactam resistance were significantly higher (p < 0.05) in freshwater than seawater, while multidrug resistance gene were higher (p < 0.05) in seawater. In all aquatic bodies, abundant virulence genes belonged to secretion system proteins followed by motility related genes. Culturable bacteria revealed differential distribution of positive and negative correlation between 31 targeted genes with expressed resistance and virulence. Among Acinetobacter, significant positive correlation was found between Phospholipase production, other virulence genes (OVGs) and resistance to DNA Synthesis Inhibitors (DSI). In Pseudomonas, positive correlation was detected between toxin genes (toxA, eta, hlyA and stx) and resistance to cell wall synthesis inhibitors (CSI) as well as with OVGs and adhesion genes (eae, afa, papC and papA). Network analysis displayed unique clustering of genes ncc, arsB, strA, merA and intI dominated by non-pathogens and distinct clustering of genes pho, erm, nfsA, trh, lasB, tdh and invA by Vibrio. This investigation extends insight on co-occurring resistance and virulence in aquatic reservoir bacteria that could pose serious threats to public health in future.


Assuntos
Vibrio parahaemolyticus , Virulência/genética , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Fatores de Virulência/genética , Fosfolipases
6.
Environ Pollut ; 311: 119937, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977641

RESUMO

Coastal waters are confluences receiving large amounts of point and non-point sources of pollution. An attempt was made to explore microbial community interactions in response to carbon, nitrogen and metal pollution. Additionally, experiments were designed to analyze the influence of these factors on horizontal gene transfer (HGT). Shift in bacterial diversity dynamics by arsenic stress and nutrient addition in coastal waters was explored by metagenomics of microcosm setups. Phylogenetic analysis revealed equal distribution of Gammaproteobacteria (29%) and Betaproteobacteria (28%) in control microcosm. This proportional diversity from control switched to unique distribution of Gammaproteobacteria (44.5%)> Flavobacteria (17.7%)> Bacteriodia (11.92%)> Betaproteobacteria (11.52%) in microcosm supplemented with carbon, nitrogen and metal (C + N + M). Among metal-stressed systems, alpha diversity analysis indicated highest diversity of genera in C + N + M followed by N + M > C+M> metal alone. Arsenic and ampicillin sensitive E. coli XL1 blue and environmental strains (Vibrio tubiashii W85 and E. coli W101) were tested for efficiency of uptake of plasmid (P) pUCminusMCS (arsBRampR) under varying stress conditions. Transformation experiments revealed that combined effect of carbon, nitrogen and metal on horizontal gene transfer (HGT) was significantly higher (p < 0.01) than individual factors. The effect of carbon on HGT was proved to be superior to nitrogen under metal stressed conditions. Presence of arsenic in experimental setups (P + M, P + N + M and P + C + M) enhanced the HGT compared to non-metal counterparts supplemented with carbon or nitrogen. Arsenic resistant bacterial isolates (n = 200) were tested for the ability to utilize various carbon and nitrogen substrates and distinct positive correlation (p < 0.001) was found between arsenic resistance and utilization of urea and nitrate. However, evident positive correlation was not found between carbon sources and arsenic resistance. Our findings suggest that carbon and nitrogen pollution in aquatic habitats under arsenic stress determine the microbial community dynamics and critically influence uptake of genetic material from the surrounding environment.


Assuntos
Arsênio , Betaproteobacteria , Gammaproteobacteria , Arsênio/farmacologia , Carbono , Escherichia coli , Gammaproteobacteria/genética , Transferência Genética Horizontal , Nitrogênio/farmacologia , Filogenia
7.
Chemosphere ; 300: 134487, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35381267

RESUMO

Weathered plastic litter is recognized as hazardous secondary microplastics(MPs) in the coastal and marine ecosystems, which are of high concern due to their greater impact on the environment. The present study aims to elucidate the impacts of environmentally weathered polyethylene (wPE) MPs on ingestion, growth and enzymatic responses in Penaeus vannamei. The Penaeus vannamei was chronically exposed to five varying concentration (0.1 mg-0.5 mg) of wPE particles in the size range between 43 and 32 µm for a period of 25days, followed by 5days depuration. At the end of exposure, a considerable number of wPE particles were observed from <2 to 14 per individual organism. However, around 60% of the wPE particles were removed after the depuration phase. The toxic exposure on P. vannamei resulted in significant changes in the enzymatic and growth responses with increasing concentration and duration. In addition, growth assessment confirmed that wPE exposure inhibited the growth of organism, and the effect was particularly evident at increasing concentrations and prolonged exposure. Also observed an elevated levels of lipid peroxidation, glutathione-S-transferases, whereas lower levels of reduced-glutathione and catalase at all exposed concentrations. This study confirmed that the ingestion of wPE was completely influenced by exposure duration, rather than the concentrations of administered. The present biomarker assay might act as an appropriate oxidative stress index for wPE toxicity. Findings of this study is useful in providing the basic biological information for environmental risk assessments of MPs, which are of high concern due to the rising input of microplastics into the environment.


Assuntos
Penaeidae , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Ecossistema , Glutationa , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Environ Pollut ; 305: 119297, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421552

RESUMO

Microplastics (MPs) are a global environmental concern and pose a serious threat to marine ecosystems. This study aimed to determine the abundance and distribution of MPs in beach sediments (12 beaches), marine biota (6 beaches) and the influence of microbes on MPs degradation in eco-sensitive Palk Bay and Gulf of Mannar coast. The mean MP abundance 65.4 ± 39.8 particles/m2 in beach sediments; 0.19 ± 1.3 particles/individual fish and 0.22 ± 0.11 particles g-1 wet weight in barnacles. Polyethylene fragments (33.4%) and fibres (48%) were the most abundant MPs identified in sediments and finfish, respectively. Histopathological examination of fish has revealed health consequences such as respiratory system damage, epithelial degradation and enterocyte vacuolization. In addition, eight bacterial and seventeen fungal strains were isolated from the beached MPs. The results also indicated weathering of MPs due to microbial interactions. Model simulations helped in tracking the fate and transboundary landfall of spilled MPs across the Indian Ocean coastline after the X-Press Pearl disaster. Due to regional circulations induced by the monsoonal wind fields, a potential dispersal of pellets has occurred along the coast of Sri Lanka, but no landfall and ecological damage are predicted along the coast of India.


Assuntos
Desastres , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Sedimentos Geológicos , Índia , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
9.
J Biomol Struct Dyn ; 40(16): 7218-7229, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33682626

RESUMO

Mangrove plants are a great source of phytomedicines, since from the beginning of human civilization and the origin of traditional medicines. In the present study, ten different mangrove leaf methanolic extracts were screened for the type of phytochemicals followed by assessing antimicrobial, anti-oxidant and anti-cancer activities. The efficient methanolic crude extract of Rhizospora mucornata was further purified and characterized for the presence of the bioactive compound. Based on UV-visible spectroscopy, FTIR, NMR and HRMS analysis, the bioactive compound was 1,4-dihydroanthraquinone; also termed as Quinizarin. This identified compound was potential in exhibiting antimicrobial, antioxidant, and cytotoxic activity. Quinizarin inhibited the growth of Bacillus cereus and Klebsiella aerogenes with minimum inhibitory concentration (MIC) of 0.78 and 1.5 mg/ml. The DPPH free radical scavenging assay revealed the maximum activity of 99.8% at the concentration of 200 µg/ml with an IC50 value of 12.67 ± 0.41 µg/ml. Cytotoxic assay against HeLa (cervical) and MDA-MB231(breast) cancer cell lines revealed IC50 values to be 4.60 ± 0.26 and 3.89 ± 0.15 µg/ml. Together the results of molecular docking and molecular dynamics simulation studies explained that Quinizarin molecule showed stronger binding affinity (-6.2 kcal/mol) and significant structural stability towards anti-apoptotic Bcl-2 protein. Thus, the study put forth the promising role of the natural molecule - Quinizarin isolated from R. mucornata in the formulation of therapeutic drugs against bacterial infections and cancer. Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Rhizophoraceae , Antraquinonas , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
10.
Mar Pollut Bull ; 172: 112885, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34461371

RESUMO

Phospholipid fatty acid (PLFA) analysis was used to examine variation in the distribution of microbial communities in heavily polluted mangrove sediments of Thane creek, west coast of India. A total of 40 individual PLFAs representing 11 functional groups were identified in the sediment and were mainly dominated by saturated fatty acids (anaerobic prokaryotes) >50%. Significant dominance of PUFA, 16:3 ω6c (34.2%) indicators of micro-eukaryotes, in subsurface depth (p < 0.05) suggests input from the remnants of marine microalgae. Declined mean relative abundance of fungi (<6%) and actinomycetes (<1%) were detected in the sediment indicating their sensitivity to anthropic stressors. Homogenous profile of microbial diversity indicating active bioturbation. Cumulative metabolic stress evident from SAT/MUFA (>1), B/F (>1) and G+/G- (<1) ratio and prolonged hypoxia to be prevalent in the creek during the study. In conclusion, PLFA signatures can thus be used as potential biomarkers of environmental monitoring and proxy for interpreting ecosystem health.


Assuntos
Ácidos Graxos , Microbiota , Monitoramento Ambiental , Sedimentos Geológicos , Fosfolipídeos
11.
Mar Pollut Bull ; 171: 112739, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34304059

RESUMO

Anthropogenic activities experienced a pause due to the nationwide lockdown, imposed to contain the rapid spread of COVID-19 in the third week of March 2020. The impacts of suspension of industrial activities, vehicular transport and other businesses for three months (25 March-30 June) on the environmental settings of Chennai, a coastal megacity was assessed. A significant reduction in the key urban air pollutants [PM2.5 (66.5%), PM10 (39.5%), NO2 (94.1%), CO (29%), O3 (45.3%)] was recorded as an immediate consequence of the reduced anthropogenic activities. Comparison of water quality of an urban river Adyar, between pre-lockdown and lockdown, showed a substantial drop in the dissolved inorganic N (47%) and suspended particulate matter (41%) during the latter period. During the pandemic, biomedical wastes in India showed an overall surge of 17%, which were predominantly plastic. FTIR-ATR analysis confirmed the polymers such as polypropylene (25.4%) and polyester (15.4%) in the personal protective equipment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Índia , Material Particulado/análise , Plásticos , SARS-CoV-2 , Água
12.
Environ Pollut ; 280: 116954, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773306

RESUMO

Marine litter is widely distributed in marine environments and has been a severe concern worldwide, due to the disposal of waste from diverse sources. The severity of this threat has garnered increasing attention in India over the last decade, but the full consequences of this pollution are yet to be quantified. To estimate the spatiotemporal distribution, composition and beach quality of marine litter pollution, 17 beaches along the Hooghly estuary, a part of the Gangetic delta was studied. Marine litter was collected from 100 m long transects during two seasons (monsoon and post-monsoon). The OSPAR monitoring standard was applied to the 16,597 litter items collected, then grouped under 6 types and 44 categories. In terms of number, litter abundance was higher during monsoon (1.10 ± 0.39 items/m2) than that of post-monsoon (0.86 ± 0.32 items/m2). Most of the beaches were categorized as low cleanliness as computed by the general index and clean coast index and the good for the pellet pollution index. Hazardous litter constituted 6.5% of the total collected litter items. The model prediction revealed that the influence of high discharge from Hooghly, Rasulpur and Subarnarekha River carried enormous anthropogenic litter to the northeast beaches. The litter flux decreases with an increase in distance from the shore, and act as a sink to the sea-floor. The results denote that the distribution and typology of marine litter were representatives of household, tourism and fishing, which in turn highlights the need for better regional litter management measures. Suggested management practices include source reduction, mitigation, management of beach environment and change in littering behaviour through environmental education.


Assuntos
Praias , Plásticos , Monitoramento Ambiental , Índia , Resíduos/análise
13.
Ecotoxicol Environ Saf ; 208: 111765, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396084

RESUMO

Recent studies have shown that organisms including humans are exposed to microplastics directly or indirectly. The present study aims to examine the ingestion of these microplastics and the consequences of the same by studying the accumulation behavior of weathered Polyethylene (wPE) microplastics. The Perna viridis were exposed chronically to three different environmentally relevant concentrations of wPE for 30 days, followed by a one-week depuration phase. There was no mortality observed in the control and exposed groups, but the feeding rate was observed to have substantially decreased in the group exposed to higher concentration (3 µgL-1) of wPE. It was also observed that a higher number of wPE particles accumulated in the intestine of exposed organisms. Interestingly, the present study revealed the presence of the substantial number of wPE particles in exposed organisms, which may adversely affect the internal organs as well as growth and reproduction. This study perceived that accumulation is marginally influenced by size of wPE. Similarly, biomarker analysis showed that wPE exposure significantly altered both the metabolism and histology of the internal organs of the exposed organisms. Overall, the study confirmed that the intestine was the most sensitive organ followed by gills, adductor muscles, and foot tissue adding new insights into the adverse effects of wPE in the marine ecosystem.


Assuntos
Microplásticos/toxicidade , Perna (Organismo)/fisiologia , Polietileno/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Ecossistema , Ecotoxicologia , Brânquias/efeitos dos fármacos , Humanos , Microplásticos/metabolismo , Perna (Organismo)/efeitos dos fármacos , Plásticos , Polietileno/toxicidade , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Sci Total Environ ; 703: 134947, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31734498

RESUMO

Plastics in the marine environment are introduced through multiple pathways, and pose serious threats to aquatic biota. Recently microplastic pollution and its possible consequences in India have been recognized by the scientific community, however the extent of the crisis has not yet been quantified. The present study attempted to ascertain the abundance, distribution and characteristics of microplastics in coastal waters (14 locations), beach sediments (22 locations) and marine fishes (11 locations) from the state of Kerala, southwest coast of India. The results showed that the mean microplastic abundance was 1.25 ±â€¯0.88 particles/m3 in coastal waters and 40.7 ±â€¯33.2 particles/m2 in beach sediments with higher concentrations in the southern coast of the state. The abundance of microplastics, mostly contributed by fragments, fibre/line and foam, in both coastal waters and beach sediments, were highly influenced by river runoff and proximity to urban agglomeration. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR) revealed that polyethylene (PE) and polypropylene (PP) were the dominant polymers in the marine environment. The digestive tracts of 15 out of 70 commercially important fishes studied, contained 22 microplastic particles. Polyethylene (PE; 38.46%) followed by cellulose (CE; 23.08%), rayon (RY; 15.38%), polyester (PL; 15.38%) and polypropylene (PP; 7.69%) were the major contributors in the fish ingested microplastic composition. A broad range of heavy metals, metalloids and other elements that are potentially indicative of hazardous chemicals were present in microplastics collected from the beaches of Kerala. These results enhance our understanding on the sources, transport pathways and the associated environmental risks of microplastics to marine ecosystems.


Assuntos
Monitoramento Ambiental , Microplásticos/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Poluição Ambiental , Peixes , Sedimentos Geológicos , Índia , Poliésteres , Polietileno , Polipropilenos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Sci Rep ; 9(1): 1354, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718727

RESUMO

Microbial degradation has long been recognized as the key rescue mechanism in shaping the oil polluted marine environments and the role of indigenous populations or their functional genomics have never been explored from Indian marine environments, post an oil spill event. In the current study, high throughput metagenomic analysis, PLFA profiling and mass spectrophotometric analysis was performed in combination with metabolomics to capture signature variations among the microbial communities in sediment, water and laboratory enrichments. Contrary to the previous reports, the bloom of Pseudomonadales (specifically genus Acinetobacter) in oiled sediment and Methylococcales in oiled water outnumbered the relative abundance of Alcanivorax in response to hydrocarbon contamination. Overall enhancement of xenobiotic degradation was suggested by metabolomic analysis in sediment and water post the spill event and varying quantitative assemblage of enzymes were found to be involved in hydrocarbon utilization. Laboratory enrichments revealed the competitive advantage of sediment communities over the water communities although unique taxa belonging to the later were also found to be enriched under in vitro conditions. Simultaneous analysis of sediment and water in the study provided explicit evidences on existence of differential microbial community dynamics, offering insight into possibilities of formulating nature identical solutions for hydrocarbon pollution.


Assuntos
Bactérias/metabolismo , Microbiologia Ambiental , Poluição por Petróleo , Água do Mar/microbiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fenômenos Químicos , DNA Ribossômico/genética , Ácidos Graxos/metabolismo , Geografia , Sedimentos Geológicos/microbiologia , Naftalenos/análise , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/análise , RNA Ribossômico 16S/genética , Navios
16.
Environ Monit Assess ; 191(1): 5, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523426

RESUMO

Seagrass ecosystems are vital for its regulatory services yet, highly threatened by degradation due to human pressures. Decomposition of two tropical seagrass species (Cymodocea serrulata and Cymodocea rotundata) was studied and compared, to understand their potential in generating additional nutrients to coastal waters. Release of carbon, nitrogen and phosphorus during the decomposition process of seagrass wracks was estimated in bacteria-active (non-poisoned) and bacteria-inhibited (poisoned) conditions from shore-washed fresh seagrass, sampled from Palk Bay, India. Incubation experiments for 25 days indicated a near three times higher concentration of dissolved organic carbon (DOC) in bacteria-inhibited flasks compared to bacteria-active conditions for both species. The maximum leaching rates of DOC, TDN and TDP were found to be 294, 65.1 and 11.2 µM/g dry wt/day, respectively. Further, higher release of dissolved inorganic nitrogen (DIN) (> 1.3 times) was documented from the bacteria-active flask, highlighting the significance of microbial process in generating bio-available nutrients from decaying seagrass. Faster decomposition (0.014 ± 0.004 day-1) in the initial stages (up to 8 days) compared to the later stages (0.005 ± 0.001 day-1) indicated a rapid loss of biomass carbon during the initial leaching process and its relative importance in the decomposition pathway. The decomposition rate is best described by a single-stage exponential decay model with a half-life of 41 days. It is estimated that the total seagrass litter available along the Palk Bay coast is about ~ 0.3 Gg with high potential of additional nitrogen (0.9 ± 0.5 Mg) and phosphorus (0.3 ± 0.1 Mg) supply to the adjacent coastal waters.


Assuntos
Alismatales/metabolismo , Bactérias/metabolismo , Monitoramento Ambiental/métodos , Nutrientes/análise , Biomassa , Carbono/metabolismo , Ecossistema , Humanos , Índia , Nitrogênio/análise , Fósforo/metabolismo
17.
Sci Total Environ ; 645: 1388-1399, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30248861

RESUMO

Occurrence of microplastics (plastic debris <5 mm) along the coast is a growing concern worldwide, due to increased input of discarded wastes from various sources. In order to evaluate the extent of microplastic pollution on the sandy beaches (25 locations) along Tamil Nadu coast (1076 km), India, microplastic debris were quantified and categorized into four different size classes. The beaches were classified according to potential sources of pollution i.e. riverine, tourism and fisheries. Beach samples collected from the high tide line contained significantly higher abundance of microplastic than at the low tide line. Beaches adjacent to rivers exhibited relatively higher microplastic abundance compared to those influenced by tourism and fishing activities. Out of the total detected debris, plastic fragments were the maximum (47-50%), followed by line/fibres (24-27%) and foam (10-19%) materials. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that polyethylene, polypropylene, and polystyrene were the main types of microplastics present in these beaches. Gut content analysis of commercially important fishes, collected from the coastal waters, revealed microplastics ingestion in 10.1% of fishes. The results indicate that microplastics accumulation in the coastal environment, especially close to the river mouths, may be a serious concern, due to its ability to enter into the marine food web and highlights the necessity of microplastics screening from estuarine, coastal waters and other potential sources.

18.
Data Brief ; 18: 180-189, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896509

RESUMO

From koppunuru study area totally 58 samples were collected in 7 different boreholes, minimum depth of 28 m and Maximum depth of 157.7 m. The borehole samples geochemical analysis (major and trace elements) was carried out at Atomic Minerals Directorate for Exploration & Research (AMD), Hyderabad, India. Major and trace element studies have been conducted on the Neoproterozoic Palnad sub-basin Andhra Pradesh, South India, to determine their Geochemistry, Uranium mineralization and provenance characteristics. Geochemically, this sedimentary basin has a different litho - unit like as gritty quartzite, conglomerate, and Shale. This study area mainly dominated by Uranium deposited and radioactive elements are predominately deposit. Strong positive correlation between Uranium and Lead (r = 0.887) suggested radiogenic nature of this system.

19.
Environ Sci Pollut Res Int ; 23(22): 23281-23290, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27638791

RESUMO

This paper presents multiple biomarkers on metal accumulation and its impacts along the Chennai to Puducherry, southeast coast of India using bivalves as bioindicators. In this regard, water samples and Perna viridis were collected from three stations and the accumulation of metals and its biological impacts were assessed. Among the three sampling stations, the maximum accumulation was noticed in Ennore (S1) than the Puducherry (S3) followed by Kovalam (S2). Mean accumulation pattern of metals in Perna viridis was found to be in the following order Zn > Cu > Ni > Cr > Pb > Cd, which were in close match with the metal concentration in seawater at respective site. The ambient metal concentration and behavior of multiple biomarkers were positively correlated indicating that the uptake of metals might induce biological changes, particularly in the internal organs, thus significantly affecting health of the aquatic organisms. P. viridis provides reliable information concerning the adverse effects and reflects the integrated effects of all contaminants. Thus, study confirmed that Ennore (S1) coast is highly vulnerable for significant pollution, in terms of metal toxicity in the study area. Overall investigation revealed that metal enrichment was observed close to the major urban areas in the S1 and S2 which were associated with industrialized areas. The assessment of multiple biomarkers on metal accumulation was the first step in determining the trophic transfer factors on marine foot web, which can be evaluated in the future based on this study.


Assuntos
Poluição Ambiental/análise , Metais Pesados/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , Biomarcadores/análise , Monitoramento Ambiental , Índia , Perna (Organismo)/química
20.
Environ Toxicol ; 31(1): 24-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24984702

RESUMO

Acute and chronic bioassay toxicity test of Lead (Pb) in Grey Mullet (Mugil cephalus), and Tiger perch (Terapon jarbua) was conducted. LC50 values (Lethal Concentration) from acute tests and chronic values were calculated by the geometric mean of the No-Observed-Effect Concentration (NOEC) and the Lowest-Observed-Effect Concentration (LOEC) in a study period of 30 days. This research was conducted to evaluate the quantitative relationship between toxicity test statistics and correlation between toxicant and the organisms exposed. Three test average LC50 was analyzed for 24, 48, 72, and 96 h and the 96 h average LC50 of M. cephalus and T. jarbua is 2.57 ± 0.47 and 2.99 ± 0.23 mg/L of Pb, respectively. Significant correlation is observed with the increased time duration and exposure concentration. The NOEC and LOEC values were calculated based on survival of test organisms for M. cephalus and T. jarbua and the values are 0.014 and 0.029 and 0.011 and 0.022 mg/L, respectively. The chronic value is found to be 0.011 mg/L for M. cephalus and 0.021 mg/L for T. jarbua. The intensity of biochemical and histological alterations increased gradually with increased Pb concentration and the exposure time. Toxicity testing is the primary step to determine the water quality safe limit on marine organisms. The outcome of the study indicates that the sensitivity of juvenile organisms to Pb, persistence of toxic effects and biomarkers as a tool capable of revealing the toxic effects of heavy metals on the environment and aquatic biota.


Assuntos
Chumbo/toxicidade , Percas/metabolismo , Perciformes/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Brânquias/patologia , Intestinos/patologia , Chumbo/química , Fígado/patologia , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...